Flink, 大数据

flink-45 UDF

UDF主要有以下几类:

  • 标量函数 Scala Functions
    • 一进一出
  • 表函数 Table Functions
    • 一进多出
  • 聚合函数 Aggregate Functions
    • 多进一出 聚合
  • 表聚合函数 Table Aggregate Functions
    • 多进 一出或多出

整体调用流程

  • 注册函数
    • 注册函数是需要调用表环境的createTemporarySystemFunction()方法
tableEnv.createTemporarySystemFunction("MyFunction", MyFunction.class)
  • 使用TableApi调用函数
    • 使用call()方法来调用自定义函数
    • call方法两个参数,一个是注册好的函数名,一个是函数调用时参数
tableEnv.from("MyTable").select(call("MyFunction", $("myField")));

在sql中调用函数

tableEnv.sqlQuery("SELECT MyFunction(MyField) FROM MyTable");

标量函数

package com.learn.flink.source;

import com.learn.flink.bean.WaterSensor;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.annotation.DataTypeHint;
import org.apache.flink.table.annotation.InputGroup;
import org.apache.flink.table.api.Expressions;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.ScalarFunction;

import static org.apache.flink.table.api.Expressions.call;

public class MyScalaFunctionDemo {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<WaterSensor> sensorDS = env.fromElements(
                new WaterSensor("s1", 1L, 1),
                new WaterSensor("s1", 2L, 2),
                new WaterSensor("s2", 2L, 2),
                new WaterSensor("s3", 3L, 3),
                new WaterSensor("s3", 4L, 4)
        );

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        // 流转表
        Table sensorTable = tableEnv.fromDataStream(sensorDS);
        tableEnv.createTemporaryView("sensor", sensorTable);
        // 注册函数
        tableEnv.createTemporaryFunction("hash_function", HashFunction.class);
        // 调用自定义函数
//        tableEnv.sqlQuery("SELECT hash_function(id) FROM sensor")
//                .execute() // 调用了sql的execute就不需要env.execute()
//                .print();
        // table api 用法
        sensorTable
                .select(call("hash_function", Expressions.$("id")))
                .execute()
                .print();
    }

    // 自定义函数的实现类
    public static class HashFunction extends ScalarFunction {
        // 接收任意类型的输入,返回INT类型输出
        public int eval(@DataTypeHint(inputGroup = InputGroup.ANY) Object o) {
            return o.hashCode();
        }
    }
}

表函数

在SQL中调用表函数,需要使用LATERAL TABLE() 来生成扩展的侧向表,然后与原始表进行联结join

  • 这里的join操作可以是直接做交叉联结cross join,在FROM后用逗号分隔两个表就可以
  • 也可以ON TRUE为条件的左联结 LEFT JOIN
package com.learn.flink.source;

import com.learn.flink.bean.WaterSensor;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.annotation.DataTypeHint;
import org.apache.flink.table.annotation.FunctionHint;
import org.apache.flink.table.annotation.InputGroup;
import org.apache.flink.table.api.Expressions;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.ScalarFunction;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.types.Row;

import static org.apache.flink.table.api.Expressions.call;

public class MyTableFunctionDemo {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<String> strDS = env.fromElements(
                "hello flink",
                "hello world hi",
                "hello java"
        );

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        // 流转表
        Table strTable = tableEnv.fromDataStream(strDS, Expressions.$("words"));
        tableEnv.createTemporaryView("str", strTable);
        // 注册函数
        tableEnv.createTemporaryFunction("split_function", SplitFunction.class);
        // 调用自定义函数
        tableEnv.sqlQuery("SELECT words, word, length FROM str, LATERAL TABLE(split_function(words))")
                .execute()
                .print();

    }

    // 集成TableFunction<返回的类型>
    // 类型标准 ROW包含两个字段word和length
    @FunctionHint(output = @DataTypeHint("ROW<word STRING, length INT>"))
    public static class SplitFunction extends TableFunction<Row> {
        // 返回必须是void 用collect方法输出
        public void eval(String str) {
            for (String word : str.split(" ")) {
                collect(Row.of(word, word.length()));
            }
        }
    }
}

写法二

SELECT words, word, length FROM str LEFT JOIN LATERAL TABLE(split_function(words)) ON true;

字段重命名

  • AS 表名(字段名1,字段名2...)
SELECT words, newWord, newLength FROM str LEFT JOIN LATERAL TABLE(split_function(words)) AS T(newWord, newLength) ON true;

聚合函数

原理

  • 首先需要创建一个累加器accmulator用来存储聚合的中间结果
    • 累加器可以看作是一个聚合状态
    • 调用createAccumulator()方法可以创建一个空的累加器
  • 对于输入的每一行数据都会调用accumulate()方法来更新累加器
  • 当所有数据都处理完成之后,通过调用getValue()方法来计算并返回最终的结果
package com.learn.flink.source;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.annotation.DataTypeHint;
import org.apache.flink.table.annotation.FunctionHint;
import org.apache.flink.table.api.Expressions;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.AggregateFunction;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.types.Row;

public class MyAggregateFunctionDemo {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 分数 权重
        DataStreamSource<Tuple3<String, Integer, Integer>> scoreWeightDS = env.fromElements(
                Tuple3.of("s1", 80, 3),
                Tuple3.of("s1", 90, 4),
                Tuple3.of("s1", 95, 4),
                Tuple3.of("s2", 75, 3),
                Tuple3.of("s2", 65, 4),
                Tuple3.of("s2", 85, 4)
        );

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        // 流转表
        Table scoreTable = tableEnv.fromDataStream(scoreWeightDS, Expressions.$("f0").as("name"), Expressions.$("f1").as("score"), Expressions.$("f2").as("weight"));
        tableEnv.createTemporaryView("scores", scoreTable);
        // 注册函数
        tableEnv.createTemporaryFunction("weight_avg", WeightAvg.class);
        // 调用自定义函数
        tableEnv.sqlQuery("SELECT name, weight_avg(score, weight) FROM scores GROUP BY name")
                .execute()
                .print();

    }

    // 泛型 第一个 返回的参数 第二个累加器类型<加权总和,权重总和>
    public static class WeightAvg extends AggregateFunction<Double, Tuple2<Integer, Integer>> {

        @Override
        public Double getValue(Tuple2<Integer, Integer> item) {
            return item.f0 * 1D / item.f1;
        }

        @Override
        public Tuple2<Integer, Integer> createAccumulator() {
            return Tuple2.of(0, 0);
        }

        /**
         * 累加计算的方法 每来一条数据 就会执行一次
         * @param acc 累加器类型
         * @param score 分数
         * @param weight 权重
         */
        public void accumulate(Tuple2<Integer, Integer> acc, Integer score, Integer weight) {
            acc.f0 += score * weight; // 加权综合= 分数1 * 权重1 + 分数2 * 权重2 + ...
            acc.f1 += weight; // 权重和 = 权重1 + 权重2 + ...
        }
    }
}

表聚合函数

计算输入数据的top2

package com.learn.flink.source;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TableAggregateFunction;
import org.apache.flink.util.Collector;

import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.call;

public class MyTableAggregateFunctionDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<Integer> numDS = env.fromElements(3, 6, 9, 12, 5, 8, 9, 4);

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        // 流转表
        Table numTable = tableEnv.fromDataStream(numDS, $("num"));

        // 注册函数
        tableEnv.createTemporaryFunction("top2", Top2.class);
        // 调用自定义函数 只支持TableApi
        numTable
                .flatAggregate(
                        call("top2", $("num")).as("value", "rank")
                )
                .select($("value"), $("rank"))
                .execute()
                .print();
    }

    // 返回类型(数值,排名)=》(12, 1) (9, 2)
    // 累加器类型(第一大的数, 第二大的数)(12, 9)
    public static class Top2 extends TableAggregateFunction<Tuple2<Integer, Integer>, Tuple2<Integer, Integer>> {

        @Override
        public Tuple2<Integer, Integer> createAccumulator() {
            return Tuple2.of(0, 0);
        }

        /**
         * 每来一个数据调用一次,比较大小,更新最大的前两个数到acc中
         *
         * @param acc 累加器
         * @param num 过来的数据
         */
        public void accumulate(Tuple2<Integer, Integer> acc, Integer num) {
            if (num > acc.f0) {
                // 新来的变第一,原来的变第二
                acc.f1 = acc.f0;
                acc.f0 = num;
            } else if (num > acc.f1) {
                // 新来的变第二, 原来的不要了
                acc.f1 = num;
            }
        }

        /**
         * 输出结果(数值,排名) 两条最大的
         *
         * @param acc 累加器
         * @param out 采集器
         */
        public void emitValue(Tuple2<Integer, Integer> acc, Collector<Tuple2<Integer, Integer>> out) {
            if (acc.f0 != 0) {
                out.collect(Tuple2.of(acc.f0, 1));
            }
            if (acc.f1 != 0) {
                out.collect(Tuple2.of(acc.f1, 2));
            }
        }
    }
}

About 蓝染君

喜爱编程开发的程序猿